首页 | 本学科首页   官方微博 | 高级检索  
     

基于多示例的K-means聚类学习算法
作者姓名:谢红薇  李晓亮
作者单位:太原理工大学计算机与软件学院,太原,030024;太原理工大学计算机与软件学院,太原,030024
基金项目:山西省自然科学基金资助项目 
摘    要:多示例学习是继监督学习、非监督学习、强化学习后的又一机器学习框架。将多示例学习和非监督学习结合起来,在传统非监督聚类算法K-means的基础上提出MIK-means算法,该算法利用混合Hausdorff距离作为相似测度来实现数据聚类。实验表明,该方法能够有效揭示多示例数据集的内在结构,与K-means算法相比具有更好的聚类效果。

关 键 词:多示例学习  K-means聚类  包间距  聚类有效性评价
修稿时间: 
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号