首页 | 本学科首页   官方微博 | 高级检索  
     


The role of clay network on macromolecular chain mobility and relaxation in isotactic polypropylene/organoclay nanocomposites
Authors:Ke Wang  Jinni Deng  Qin Zhang  Xia Dong  Charles C Han
Affiliation:a Department of Polymer Science and Materials, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, PR China
b Key Laboratory of Engineering Plastics, Joint Laboratory of Polymer Science and Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, PR China
Abstract:It is well known that a so-called “three-dimensional filler network structure” will be constructed in the polymer/layered silicate nanocomposites when the content of layered clay reaches a threshold value, at which the silicate sheets are incapable of freely rotating, due to physical jamming and connecting of the nanodispersed layered silicate. In this article, the effect of such clay network on the mobility and relaxation of macromolecular chains in isotactic polypropylene(iPP)/organoclay nanocomposites was investigated in detail with a combination of DMTA, DSC, TGA, TEM, rheometry and melt flow index measurements. The main aim is to establish a relationship between the mesoscopic filler network structure and the macroscopic properties of the polymer nanocomposites, particularly to explore the role of the clay network on the mobility and relaxation of macromolecular chains. It was found that the nanodispersed clay tactoids and layers play less important or dominant roles on the mobility of iPP chains depending on the formation of percolating filler network. The turning point of macroscopic properties appeared at 1 wt% organoclay content. Before this point, the effect of organoclay can be negligible, and the increase of chain mobility was ascribed to the decrease of molecular weight of polymer chains, as commonly occurs during dynamic melt processing; after this point, however, a reduced mobility of chains and a retarded chain relaxation were observed and attributed to the formation of a mesoscopic filler network. The essential features of such a mesoscopic organoclay network were estimated and discussed on the basis of stress relaxation and structural reversion measurements. A schematic model was proposed to describe the different relaxation and motion behaviors of macromolecular chains in the unfilled polymer and the filled hybrids with partial and percolated organoclay networks, respectively.
Keywords:iPP/organoclay nanocomposite  Clay network  Chain mobility
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号