首页 | 本学科首页   官方微博 | 高级检索  
     

基于色差系统的宝庆桂丁红茶品质量化评价模型构建
引用本文:杜邵龙,周志梅,雷亚兰,李瑾,田容积,唐瀚. 基于色差系统的宝庆桂丁红茶品质量化评价模型构建[J]. 食品工业科技, 2022, 43(14): 329-335. DOI: 10.13386/j.issn1002-0306.2021100164
作者姓名:杜邵龙  周志梅  雷亚兰  李瑾  田容积  唐瀚
作者单位:1.湖南兴盛茶业科技有限公司,湖南邵阳4229002.湖南师范大学化学化工学院,湖南长沙 4100833.邵阳市农业科学研究院,湖南邵阳 422000
基金项目:湖南省自然科学基金(2018JJ2253);湖南创新型省份建设专项(2020NK2047);邵阳市科技计划项目(2020GZ44)。
摘    要:目的:基于茶叶色差构建宝庆桂丁红茶品质量化评价模型。方法:以宝庆桂丁红茶为研究对象,在感官审评的基础上,分别测定干茶、茶汤和叶底的色差值,分析茶叶色差值与品质之间的相关性,并以GA-BP神经网络构建品质量化评价模型。结果:宝庆桂丁红茶品质与茶汤和叶底的L、a、b值呈极显著相关(P<0.01),与干茶a值呈显著相关(P<0.05);遗传算法(GA)的引进明显提高了BP神经网络的拟合精度,GA-BP模型的决定系数(R2)明显高于BP网络;通过对比不同隐含层结构,优选结构为9-5-1的GA-BP神经网络结构;优选的GA-BP神经网络模型的训练、验证、测试和预测的决定系数(R2)分别为0.988、0.976、0.933和0.95。结论:基于色差系统和GA-BP神经网络对宝庆桂丁红茶品质进行量化评价的方法是可行的。

关 键 词:色差系统   GA-BP神经网络   宝庆桂丁红茶   品质评价模型
收稿时间:2021-10-18

Construction of Quantitative Evaluation Model of Baoqing Guiding Black Tea Based on Chromatic Aberration Analysis
DU Shaolong,ZHOU Zhimei,LEI Yalan,LI Jin,TIAN Rongji,TANG Han. Construction of Quantitative Evaluation Model of Baoqing Guiding Black Tea Based on Chromatic Aberration Analysis[J]. Science and Technology of Food Industry, 2022, 43(14): 329-335. DOI: 10.13386/j.issn1002-0306.2021100164
Authors:DU Shaolong  ZHOU Zhimei  LEI Yalan  LI Jin  TIAN Rongji  TANG Han
Affiliation:1.Hunan Xinsheng Tea Sci-tech Co., Ltd., Shaoyang 422900, China2.College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410083, China3.Shaoyang Academy of Agricultural Sciences, Shaoyang 422000, China
Abstract:Objective: In order to construct a quantitative evaluation model of Baoqing Guiding black tea based on chromatic aberration. Methods: Baoqing Guiding black tea were used as materials. On the basis of sensory evaluation, the chromatic aberration value of dry tea, tea infusion and infused leaf were measured respectively. The correlation between chromatic aberration value and tea quality were analyzed, and the quality evaluation model were constructed by GA-BP neural networks. Results: The quality of Baoqing Guiding black tea was extremely significant correlated with the Lab value of tea infusion and leaves (P<0.01), and significantly correlated with the a value of dry tea (P<0.05). The introduction of genetic algorithm (GA) obviously improved the fitting accuracy of BP neural network, the coefficient of determination (R2) of GA-BP model was obviously higher than BP model. By comparing different hidden layer structures, the GA-BP neural network with structure of 9-5-1 were selected. The determination coefficients (R2) of training, verification, test and prediction of optimized GA-BP model were 0.988, 0.976, 0.933 and 0.95 respectively. Conclusion: The quantitative quality evaluation method of Baoqing Guiding black tea based on chromatic aberration and GA-BP neural network was feasible.
Keywords:
点击此处可从《食品工业科技》浏览原始摘要信息
点击此处可从《食品工业科技》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号