首页 | 本学科首页   官方微博 | 高级检索  
     


Neural network ensemble operators for time series forecasting
Affiliation:1. School of Telecommunication and Information Engineering, Xi’an University of Posts and Telecommunications, Xi’an, PR China;2. School of Computer Science, Shaanxi Normal University, Xi’an, PR China;1. Department of Computing Languages and Systems, University of Sevilla, ETSII, Avda. de la Reina Mercedes s/n, 41012 Sevilla, Spain;1. Graduate Program in Computer Science, PPGI, UFES Federal University of Espirito Santo, Av. Fernando Ferrari, 514, CEP 29075-910 Vitória, Espírito Santo, ES, Brazil;2. Department of Production Engineering & Graduate Program in Computer Science, PPGI, UFES Federal University of Espirito Santo, Av. Fernando Ferrari, 514, CEP 29075-910 Vitória, Espírito Santo, ES, Brazil;1. Department of Software Design and Management, Gachon University, Republic of Korea;2. Department of Computer Science, University of Minnesota, United States;3. NHN Institute for The Next Network, Republic of Korea;4. Naver Corporation, Republic of Korea
Abstract:
The combination of forecasts resulting from an ensemble of neural networks has been shown to outperform the use of a single “best” network model. This is supported by an extensive body of literature, which shows that combining generally leads to improvements in forecasting accuracy and robustness, and that using the mean operator often outperforms more complex methods of combining forecasts. This paper proposes a mode ensemble operator based on kernel density estimation, which unlike the mean operator is insensitive to outliers and deviations from normality, and unlike the median operator does not require symmetric distributions. The three operators are compared empirically and the proposed mode ensemble operator is found to produce the most accurate forecasts, followed by the median, while the mean has relatively poor performance. The findings suggest that the mode operator should be considered as an alternative to the mean and median operators in forecasting applications. Experiments indicate that mode ensembles are useful in automating neural network models across a large number of time series, overcoming issues of uncertainty associated with data sampling, the stochasticity of neural network training, and the distribution of the forecasts.
Keywords:Time series  Forecasting  Ensembles  Combination  Mode estimation  Kernel density estimation  Neural networks  Mean  Median
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号