首页 | 本学科首页   官方微博 | 高级检索  
     


Iterated local search heuristics for the Vehicle Routing Problem with Cross-Docking
Affiliation:1. Faculty of Engineering and Computer Science, Concordia University, Canada;2. Faculty of Computers and Information, Menofia University, Egypt;3. Department of Automatic Control and Systems Engineering, Sheffield University, UK;1. Research and Higher Studies Center, National Polytechnic Institute, A.P. 14-740, 07000 Mexico City, Mexico;2. Centro de Investigación en Computación, Instituto Politécnico Nacional, Av. Juan de Dios Batiz w/n and Miguel Othon de Mendizabal, P.O. 07738, Mexico City, Mexico;1. Grupo de Pesquisa em Inteligência de Negócio – GPIN, Faculdade de Informática, PUCRS, Av. Ipiranga, 6681-Prédio 32, Sala 628, 90619-900 Porto Alegre, RS, Brazil;2. Laboratório de Bioinformática, Modelagem e Simulação de Biossistemas – LABIO, Faculdade de Informática, PUCRS, Av. Ipiranga, 6681-Prédio 32, Sala 602, 90619-900 Porto Alegre, RS, Brazil
Abstract:This work addresses the Vehicle Routing Problem with Cross-Docking (VRPCD). The problem consists in defining a minimum cost set of routes for a fleet of vehicles that meets the demands of products for a set of suppliers and customers. The vehicles leave a single Cross-Dock (CD) towards the suppliers, pick up products and return to the CD, where products can be exchanged before being delivered to their customers. The vehicle routes must respect the vehicle capacity constraints, as well as the time window constraints. We adapted a constructive heuristic and six local search procedures from the literature of VRP, and made them efficient in the presence of the synchronization constraints of VRPCD. Besides, we propose three Iterated Local Search (Lourenço et al., 2010) heuristics for VRPCD. The first heuristic is a standard implementation of ILS, while the second extends the classic ILS framework by keeping a set of elite solutions, instead of a single current solution. The latter set is used in a restart procedure. As far as we can tell, this is the first ILS heuristic in the literature that keeps a population of current elite solutions. The third heuristic is an extension of the second that relies on an intensification procedure based on an Integer Programming formulation for the Set Partitioning problem. The latter allows a neighborhood with an exponential number of neighbors to be efficiently evaluated. We report computational results and comparisons with the best heuristics in the literature. Besides, we also present a new set with the largest instances in the literature of VRPCD, in order to demonstrate that the improvements we propose for the ILS metaheuristic are efficient even for large size instances. Results show that the best of our heuristics is competitive with the best heuristics in the literature of VRPCD. Besides, it improved the best solution known for half of the benchmark instances in the literature.
Keywords:Cross-docking  Vehicle Routing Problem  ILS  Set Partitioning
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号