首页 | 本学科首页   官方微博 | 高级检索  
     


Spatiotemporal mapping of microscopic strains and defects to reveal Li-dendrite-induced failure in all-solid-state batteries
Affiliation:1. Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials, Xi''an Jiaotong University, Xi''an, Shaanxi 710049, PR China;2. Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Abstract:Solid-state electrolytes (SSEs) are key to the success and reliability of all-solid-state lithium batteries, potentially enabling improvements in terms of safety and energy density over state-of-the-art lithium-ion batteries. However, there are several critical challenges to their implementation, including the interfacial instability stemming from the dynamic interaction of as-formed dendritic lithium during cycling. For this work, we emphasize the importance of studying the spatial distribution and temporal evolution of strains and defects in crystalline solid-state electrolytes at the micro-scale, and how this affects dendrite growth. A proof-of-principle study is demonstrated using the synchrotron radiation based micro Laue X-ray diffraction method, and a custom-developed in-situ cycling device. Defects and residual strains are mapped, and the evolution of intragranular misorientation is observed. The feasibility of using this technique is discussed, and recommendations for micro-strain engineering to address the Li/SSEs interfacial issues are given. Also, work directions are pointed out with the consideration of combining multi-techniques for “poly-therapy”.
Keywords:All-solid-state Li battery  In-situ spatiotemporal μLaue study  Microscopic strain and defects  Dendritic failure
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号