首页 | 本学科首页   官方微博 | 高级检索  
     

基于一维密集连接卷积网络的风电齿轮箱智能故障分类
引用本文:徐进,丁显,程浩,滕伟. 基于一维密集连接卷积网络的风电齿轮箱智能故障分类[J]. 可再生能源, 2020, 38(2): 187-192
作者姓名:徐进  丁显  程浩  滕伟
作者单位:鲁能集团有限公司, 北京 100020;华北电力大学 电站设备状态监测与控制教育部重点实验室, 北京102206
基金项目:国家自然科学基金项目(51775186);鲁能集团有限公司科技项目(528060170002)
摘    要:人工智能技术的飞速发展为现代能源装备的精益化故障诊断与健康管理提供了可能。风电齿轮箱由多个齿轮、轴承组成,且长期在变速、变载荷工况下运行,依靠传统的故障特征提取结合机器学习方法进行故障诊断存在精度低、缺乏智能性等缺点。文章提出了基于一维密集连接卷积网络的风电齿轮箱故障分类方法:将原始振动信号直接送入网络模型,经过密集连接、合成连接与卷积运算,匹配对应的故障类型,迭代训练故障分类模型;振动信号输入模型后的分类结果决定所属故障类别。文章所提出的风电齿轮箱故障分类方法具有诊断流程简单、故障识别率高等特点,多工况试验台故障数据验证了该方法的有效性。

关 键 词:一维  密集连接  卷积神经网络  智能化  故障分类

Intelligent fault classification of wind turbine gearbox based on 1-D densely connected convolutional network
Xu Jin,Ding Xian,Cheng Hao,Teng Wei. Intelligent fault classification of wind turbine gearbox based on 1-D densely connected convolutional network[J]. Renewable Energy(China), 2020, 38(2): 187-192
Authors:Xu Jin  Ding Xian  Cheng Hao  Teng Wei
Affiliation:(Luneng Group Co.,Ltd.,Beijing 100020,China;Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education,North China Electric Power University,Beijing 102206,China)
Abstract:The development of artificial intelligence provides a platform for accurate fault diagnosis and health management for energy equipment.Wind turbine gearbox consists of multiply gears and bearings,and operates under varying speeds and loads.For the fault diagnosis of wind turbine gearbox,conventional fault feature extraction combined with machine learning have some disadvantages,e.g.,low accuracy and intelligence insufficiency,etc.In this paper,a 1-D densely connected convolutional network based fault classification method is proposed for wind turbine gearbox.The original vibration signals are directly input into the designed model,and processed by the dense connectivity,composite function and convolutional computation.Through matching the fault types,the model is iteratively trained.During the testing phase,the classification results from original testing signals will determine the final fault types.The proposed method is simple in fault diagnosis and high accuracy in fault recognition,which is verified by the experimental vibration data of multiply operational conditions and faults.
Keywords:1-Dimension  densely connected  convolutional network  intelligence  fault classification
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号