首页 | 本学科首页   官方微博 | 高级检索  
     

基于聚类的决策树连续属性离散化改进算法
引用本文:周锐,胡学钢. 基于聚类的决策树连续属性离散化改进算法[J]. 微计算机信息, 2011, 0(6)
作者姓名:周锐  胡学钢
作者单位:合肥工业大学计算机与信息学院;安徽广播电视大学;
摘    要:
基于信息熵的二元分割算法离散连续属性,在对连续属性较多,数据量较大的数据集进行分析预测中,存在不足。实验表明,在决策树算法中结合改进后的k-means算法作为连续属性离散化算法,在连续属性较多的数据实例中可以构造出更好的决策树。

关 键 词:连续属性  离散化  改进算法  聚类  K-means算法  

A Improved Algorithm for Discretization of Continuously-valued Attribute in Decision Tree based on Clustering
ZHOU Rui HU Xue-gang. A Improved Algorithm for Discretization of Continuously-valued Attribute in Decision Tree based on Clustering[J]. Control & Automation, 2011, 0(6)
Authors:ZHOU Rui HU Xue-gang
Affiliation:ZHOU Rui HU Xue-gang(chool of Computer and Information,Hefei University of Technology,Hefei 230009,China)(Anhui Radio & TV University,Hefei 230022,China)
Abstract:
When the large data-set had many continuously-valued attribute,it was insufficient that the bi-interval discretization method based on information entropy discreted continuously-valued attribute.Experimental results show that,using improved k-means algorithm for discretization of continuous attributes can be constructed in the many continuously-valued attribute instance focus on a better decision tree.
Keywords:Continuously-valued Attribute  Discretization  Improved Algorithm  clustering algorithm  K-means algorithm  
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号