首页 | 本学科首页   官方微博 | 高级检索  
     


The contrived transient-explicit method for solving steady-state flows: application to a rotating, recirculating flow
Authors:L M de Socio  E M Sparrow  E R G Eckert
Affiliation:Department of Mechanical Engineering University of Minnesota, Minneapolis, Minnesota 55455, U.S.A.
Abstract:A method is described for solving steady-state fluid flow and heat transfer problems which are governed by elliptic-type differential equations. A contrived transient version of the steady-state problem is constructed by appending time derivatives to all the participating equations, regardless of whether or not such terms have physical reality. Each time derivative is multiplied by a fictive diffusivity coefficient which is varied during the course of an explicit marching procedure in order to achieve rapid, stable convergence to the steady state. The solution method is applied to a three-component laminar flow in a cylindrical enclosure having one rotating wall and coolant throughflow. Recirculation patterns are set up in the enclosure due to the shearing action of the throughflow and to the rotation of the disk. The surface heat transfer is found to decrease as the Reynolds number of the throughflow increases.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号