首页 | 本学科首页   官方微博 | 高级检索  
     


Approximate motion planning and the complexity of the boundary of the union of simple geometric figures
Authors:Helmut Alt, Rudolf Fleischer, Michael Kaufmann, Kurt Mehlhorn, Stefan Nä  her, Stefan Schirra  Christian Uhrig
Affiliation:(1) Fachbereich Mathematik, Freie Universität Berlin, Arnimallee 2-6, 1000 Berlin 33, Federal Republic of Germany;(2) Max-Planck-Institut für Informatik, Im Stadtwald, W-6600 Saarbrücken, Federal Republic of Germany
Abstract:We study rigid motions of a rectangle amidst polygonal obstacles. The best known algorithms for this problem have a running time of OHgr(n 2), wheren is the number of obstacle corners. We introduce thetightness of a motion-planning problem as a measure of the difficulty of a planning problem in an intuitive sense and describe an algorithm with a running time ofO((a/b · 1/epsivcrit + 1)n(logn)2), wherea geb are the lengths of the sides of a rectangle and epsivcrit is the tightness of the problem. We show further that the complexity (= number of vertices) of the boundary ofn bow ties (see Figure 1) isO(n). Similar results for the union of other simple geometric figures such as triangles and wedges are also presented.This work was supported partially by the DFG Schwerpunkt Datenstrukturen und Algorithmen, Grants Me 620/6 and Al 253/1, and by the ESPRIT II Basic Research Actions Program of the EC under Contract No. 3075 (project ALCOM).
Keywords:Computational geometry  Motion planning  Boundary complexity  Combinatorial geometry  Analysis of algorithms
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号