首页 | 本学科首页   官方微博 | 高级检索  
     

基于X-LiNbO3/SiO2/Si低温漂、大机电耦合SH-SAW谐振器的设计
引用本文:温福军,王园园,钱莉荣,王荔田,李翠平,熊阳,田亚会,李红浪. 基于X-LiNbO3/SiO2/Si低温漂、大机电耦合SH-SAW谐振器的设计[J]. 压电与声光, 2024, 46(3): 290-295
作者姓名:温福军  王园园  钱莉荣  王荔田  李翠平  熊阳  田亚会  李红浪
作者单位:天津理工大学 集成电路科学与工程学院,薄膜电子与通信器件天津市重点实验室,天津 300384 ;天津理工大学 光电器件与通信技术教育部工程研究中心,天津 300384;中国科学院声学研究所,北京 100190;国家纳米科学中心,北京 100190
摘    要:铌酸锂(LN)单晶薄膜具有较高的机电耦合系数(k2 eff>30%),其水平剪切(SH)声学模式常被应用于开发具有大机电耦合系数的薄膜声学谐振器和超宽带滤波器。但LN 的频率温度系数较大(TCF > -50×10-6/℃),这不仅会降低滤波器的可用有效带宽,同时也会限制器件的功率处理能力。采用3D周期有限元模型对基于X 切LN/SiO2/Si结构SH 声表面波(SH-SAW)谐振器进行了优化研究。研究结果表明,当SH-SAW 传播角ψ=-10°~-20°、LN和SiO2 膜厚分别为hLN=0.1λ 和hSiO2 =0.2λ(λ 为叉指换能器周期)、铝电极金属化率η=0.4、电极相对厚度hAl/λ=5%~10%时,SH-SAW 谐振器的 k2 eff 约为30%,且其TCF<-20×10-6/℃,有望用于开发新一代的低温漂、超宽带5G SAW 滤波器。

关 键 词:X 切铌酸锂薄膜  水平剪切声表面波  有效机电耦合系数  频率温度系数  声表面波谐振器  超宽带声表面波滤波器

Design of Low Drift, Large Electromechanical Coupling SH-SAW Resonators Based on X-Cut LiNbO3/SiO2/Si
WEN Fujun,WANG Yuanyuan,QIAN Lirong,WANG Litian,LI Cuiping,XIONG Yang,TIAN Yahui,LI Honglang. Design of Low Drift, Large Electromechanical Coupling SH-SAW Resonators Based on X-Cut LiNbO3/SiO2/Si[J]. Piezoelectrics & Acoustooptics, 2024, 46(3): 290-295
Authors:WEN Fujun  WANG Yuanyuan  QIAN Lirong  WANG Litian  LI Cuiping  XIONG Yang  TIAN Yahui  LI Honglang
Affiliation:Tianjin Key Laboratory of Film Electronic & Communication Devices, School of Integrated Circuit Science and Engineering,Tianjin University of Technology, Tianjin 300384 , China ;Engineering Research Center for Optoelectronic Devicesand Communication Technology of Ministry of Education, Tianjin University of Technology, Tianjin 300384 , China;Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 , China; National Center for Nanoscience and Technology, Beijing 100190 , China
Abstract:

Owing to its high electromechanical coupling coefficient (k2 eff>30%), the horizontal shear (SH) acoustic

modes in lithium niobate (LN) single-crystal films are typically investigated to develop thin-film acoustic resonators

with large electromechanical coupling and ultra-wideband acoustic filters. However, its temperature coefficient

of frequency (TCF) is extremely high (>-50×10-6/℃). A high TCF not only reduces the effective bandwidth

but also limits the power-management capability of the filters. Herein, we present an investigation into the

optimization design of a low drift, large electromechanical coupling horizontal-shear surface acoustic wave (SHSAW)

resonator based on the X-cut LN/SiO2/Si structure using a threedimensional periodic finite-element model.

Simulation results show that when the SH-SAW propagation angle ψ is between -10° and -20°, the film thicknesses

of LN and SiO2 are 0.1λ and 0.2λ (where λ is the period of the interdigital transducer) respectively, the metallization

rate of the aluminum electrode (η) is 0.4, the relative thickness of the electrode is between 5% and 10%, the k2 eff of the SH-SAW resonator remains at ~30%, and the TCF is less than -20×10-6/℃. Hence, the resonator is

suitable for developing the next generation of low-temperature drift, ultra-wideband 5G SAW filters.

Keywords:X-cut lithium niobate   SH-SAW   effective electromechanical coupling coefficient   temperature
点击此处可从《压电与声光》浏览原始摘要信息
点击此处可从《压电与声光》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号