首页 | 本学科首页   官方微博 | 高级检索  
     


Compositional factors associated with calcium lactate crystallization in smoked Cheddar cheese
Authors:Rajbhandari P  Kindstedt P S
Affiliation:Department of Nutrition and Food Sciences, University of Vermont, Burlington 05405-0044
Abstract:
Previous researchers have observed that surface crystals of calcium lactate sometimes develop on some Cheddar cheese samples but not on other samples produced from the same vat of milk. The causes of within-vat variation in crystallization behavior have not been identified. This study compared the compositions of naturally smoked Cheddar cheese samples that contained surface crystals with those of samples originating from the same vat that were crystal-free. Six pairs of retail samples (crystallized and noncrystallized) produced at the same cheese plant on different days were obtained from a commercial source. Cheese samples were 5 to 6 mo old at the time of collection. They were then stored for an additional 5 to 13 mo at 4°C to ensure that the noncrystallized samples remained crystal-free. Then, the crystalline material was removed and collected from the surfaces of crystallized samples, weighed, and analyzed for total lactic acid, l(+) and d(−) lactic acid, Ca, P, NaCl, moisture, and crude protein. Crystallized and noncrystallized samples were then sectioned into 3 concentric subsamples (0 to 5 mm, 6 to 10 mm, and greater than 10 mm depth from the surface) and analyzed for moisture, NaCl, titratable acidity, l(+) and d(−) lactic acid, pH, and total and water-soluble calcium. The data were analyzed by ANOVA according to a repeated measures design with 2 within-subjects variables. The crystalline material contained 52.1% lactate, 8.1% Ca, 0.17% P, 28.5% water, and 8.9% crude protein on average. Both crystallized and noncrystallized cheese samples contained significant gradients of decreasing moisture from center to surface. Compared with noncrystallized samples, crystallized samples possessed significantly higher moisture, titratable acidity, l(+) lactate, and water soluble calcium, and significantly lower pH and NaCl content. The data suggest that formation of calcium lactate crystals may have been influenced by within-vat variation in salting efficacy in the following manner. Lower salt uptake by some of the cheese curd during salting may have created pockets of higher moisture and thus higher lactose within the final cheese. When cut into retail-sized chunks, the lower salt, higher moisture samples contained more lactic acid and thus lower cheese pH, which shifted calcium from the insoluble to the soluble state. Lactate and soluble calcium contents in these samples became further elevated at the cheese surface because of dehydration during smoking, possibly triggering the formation of calcium lactate crystals.
Keywords:Cheddar cheese   calcium lactate   crystal
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号