首页 | 本学科首页   官方微博 | 高级检索  
     


H1-interpolation on quadrilateral and hexahedral meshes with hanging nodes
Authors:V. Heuveline  F. Schieweck
Affiliation:1.Rechenzentrum und Institut für Angewandte Mathematik,Universit?t Karlsruhe,Karlsruhe,Germany;2.Institut für Analysis und Numerik,Otto-von-Guericke-Universit?t Magdeburg,Magdeburg,Germany
Abstract:We propose a Scott-Zhang type finite element interpolation operator of first order for the approximation of H 1-functions by means of continuous piecewise mapped bilinear or trilinear polynomials. The novelty of the proposed interpolation operator is that it is defined for general non-affine equivalent quadrilateral and hexahedral elements and so-called 1-irregular meshes with hanging nodes. We prove optimal local approximation properties of this interpolation operator for functions in H 1. As necessary ingredients we provide a definition of a hanging node and a rigorous analysis of the issue of constrained approximation which cover both the two- and three-dimensional case in a unified fashion.
Keywords:65N15  65N30  65N50
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号