Adaptive population-based search: Application to estimation of nonlinear regression parameters |
| |
Authors: | Josef Tvrdí k,Ivan K?ivý |
| |
Affiliation: | a Department of Computer Science, University of Ostrava, 30. dubna 22, 701 03 Ostrava, Czech Republic b Department of Mathematics, University of Ostrava, 30. dubna 22, 701 03 Ostrava, Czech Republic |
| |
Abstract: | ![]() Algorithms for the estimation of nonlinear regression parameters are considered. Adaptive population-based search algorithms are proposed and implemented in deriving reliable estimates at a reasonable time with default setting of their controlling parameters. The algorithms are tested on the NIST collection of data sets containing 27 nonlinear regression tasks of various level of difficulty. The experimental results show that both algorithms with competing heuristics are significantly more reliable as compared with the algorithm based on Levenberg-Marquardt optimizing procedure. |
| |
Keywords: | Global optimization Evolutionary algorithms Controlled random search Convergence Heuristics Nonlinear regression |
本文献已被 ScienceDirect 等数据库收录! |