首页 | 本学科首页   官方微博 | 高级检索  
     


A semi-parametric approach for mixture models: Application to local false discovery rate estimation
Authors:Sté  phane Robin,Jean-Jacques Daudin
Affiliation:a UMR518 AgroParisTech/INRA, 16 rue Claude Bernard, 75005 Paris, France
b Université Paris X, 200 avenue de la République, 92001 Nanterre Cedex, France
Abstract:
A procedure to estimate a two-component mixture model where one component is known is proposed. The unknown part is estimated with a weighted kernel function. The weights are defined in an adaptive way. The convergence to a unique solution of our estimation procedure is proven. The procedure is compared with two classical approaches using simulation. In addition, the results obtained are applied to multiple testing procedure in order to estimate the posterior population probabilities and the local false discovery rate.
Keywords:False discovery rate   Mixture model   Multiple testing procedure   Semi-parametric density estimation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号