首页 | 本学科首页   官方微博 | 高级检索  
     


Radical-initiator-Induced solid-state polymerization of butadiyne nanocrystals in water and their dispersion stabilization
Authors:Kato Shuhei  Kinemuchi Takahiro  Tatewaki Yoko  Okada Shuji  Masuhara Akito  Kasai Hitoshi  Oikawa Hidetoshi
Affiliation:Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan.
Abstract:Butadiyne nanocrystals in water are usually polymerized by UV or gamma-ray irradiation to give polydiacetylene (PDA) nanocrystals. In this study, we confirmed that solid-state polymerization of 1,6-di(N-carbazolyl)-2,4-hexadiyne (DCHD) and 5,7-dodecadiyn-1,12-diyl bis[N-(butoxycarbonyl-methyl)carbamate] (4BCMU) could be stimulated by water-soluble radical initiators. The radical initiators used were potassium peroxodisulfate, three kinds of azo-type compounds and a redox initiator. In all cases, the solid-state polymerization was confirmed by color change into blue indicating that PDA modified by the radical residues at the end was formed. However, nanocrystal cohesion occurred especially when the concentration of the initiators was high or the dispersion was kept for a long time. In order to improve the dispersion stability, two kinds of surfactants, i.e., sodium dodecyl sulfate (SDS) or dodecyltrimethylammonium chloride (DTMAC), were added to the DCHD nanocrystal aqueous dispersion. As a result, when anionic SDS was added, the solid-state polymerization of nanocrystals proceeded without coagulation and quantitative conversion was confirmed for all initiators. Cationic DTMAC has no effect on dispersion stabilization. PDA nanocrystal surfaces in water are negatively charged in nature and electric interaction of nanocrystals with the cations results in decrease of surface charge and aggregation of nanocrystals.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号