首页 | 本学科首页   官方微博 | 高级检索  
     


Evaluation of kinetics using label-free optical biosensors
Authors:Yung-Shin Sun  James P Landry  X D Zhu
Affiliation:1. Department of Physics, Fu-Jen Catholic University, New Taipei City, Taiwan;2. Department of Physics, University of California at Davis, Davis, California, USA
Abstract:Optical biosensors provide a platform for qualitatively and quantitatively analyzing various biomolecular interactions. In addition to advantages such as label-free and high-throughput detection, these devices are also capable of measuring real-time binding curves in response to changes in optical properties of biomolecules. These kinetic data may be fitted to models to extract binding affinities such as association rates, dissociation rates, and equilibrium dissociation constants. In these biosensors, one of the binding pair is usually immobilized on a solid substrate for capturing the other. Due to the nature of these surface-based methods, mass transport effects and immobilization heterogeneity may cause problems when fitting the kinetic curves with the simple one-to-one Langmuir model. Here, real-time binding curves of various antibody–antigen reactions were obtained using an ellipsometry-based biosensor, and the results were fitted to the simple one-to-one model as well as a more sophisticated approach. The results show that the one-to-two model fitted much better to the curves than the one-to-one model. The two-site model may be explained by assuming two immobilization configurations on the surface. In summary, in fitting real-time curves obtained from optical biosensors, more sophisticated models are usually required to take surface-related issues, such as immobilization heterogeneity, and mass transport effects within targets, into account.
Keywords:Biomolecular interaction  label-free optical biosensor  Langmuir equation  oblique-incidence reflectivity difference microscopy  reaction rates
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号