首页 | 本学科首页   官方微博 | 高级检索  
     

动态图像序列中的运动目标检测
引用本文:汪亚明,黄文清,周海英. 动态图像序列中的运动目标检测[J]. 计算机测量与控制, 2003, 11(8): 564-565
作者姓名:汪亚明  黄文清  周海英
作者单位:浙江工程学院,计算机视觉与模式识别研究中心,浙江,杭州,310033;浙江工程学院,计算机视觉与模式识别研究中心,浙江,杭州,310033;浙江工程学院,计算机视觉与模式识别研究中心,浙江,杭州,310033
基金项目:浙江省自然科学基金资助 (6 0 10 19)
摘    要:根据动态图像序列中背景因成像过程中各种因素而产生变化所存在的复杂性,提出了自适应的前景目标检测方法。首先,建立图像每一像素点的高斯分布模型,并根据序列中的当前帧及历史帧信息自适应地调整模型的参数。然后,结合图像帧间的差分信息以及灰度分布的先验概率等因素将图像从空间域映射至统计域。最后,在统计域中对前景目标进行鲁棒分割。实验的结果反映了该方法的有效性。

关 键 词:动态图像序序  目标检测  自适应图像分割
文章编号:1671-4598(2003)08-0564-02
修稿时间:2003-01-24

Detection of Moving Objects from Dynamic Image Sequence
WANG Ya-ming,HUANG Wen-qing,ZHOU Hai-ying. Detection of Moving Objects from Dynamic Image Sequence[J]. Computer Measurement & Control, 2003, 11(8): 564-565
Authors:WANG Ya-ming  HUANG Wen-qing  ZHOU Hai-ying
Abstract:The background of dynamic image sequence is very complex due to the factors in imaging process. To cope with this problem, an adaptive image segmentation method for detecting the foreground objects is proposed. First, a Gaussian distribution model for image pixel is proposed. The parameters contained in the model are adaptively updated based on the information from the current and historical frames. Then, every frame is mapped from spatial domain to statistical domain incorporating the factors such as the difference image from the consecutive frames and the prior distribution of a pixel density. Finally, the foreground objects are robustly segmented in the statistical domain. Experimental results show the feasibility of the proposed methods.
Keywords:dynamic image sequence  object detection  adaptive image segmentation
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号