首页 | 本学科首页   官方微博 | 高级检索  
     

采用不同模型预测低碳Fe–Ni合金等离子熔覆层的冲击韧性
引用本文:胡明强,胡永俊,李蓝特,邹小风,李风,舒畅. 采用不同模型预测低碳Fe–Ni合金等离子熔覆层的冲击韧性[J]. 电镀与涂饰, 2021, 40(6): 421-426. DOI: 10.19289/j.1004-227x.2021.06.004
作者姓名:胡明强  胡永俊  李蓝特  邹小风  李风  舒畅
作者单位:广东工业大学材料与能源学院,广东 广州 510006
摘    要:采用等离子熔覆法在Mn13高锰钢上制备了低碳Fe-Ni合金层。以熔覆电流、喷头移动速率、离子气流量和热处理温度作为输入参数,以冲击韧性作为输出参数,建立了BP(误差反向传播)神经网络模型和粒子群算法优化(PSO)BP神经网络模型,并跟冲击韧性与热处理温度之间的线性回归模型进行对比。结果表明,线性回归模型、BP神经网络模型和PSO-BP模型的平均相对误差分别为7.06%、6.12%和3.03%。PSO-BP模型的预测结果与实测值的误差较小。

关 键 词:高锰钢  铁镍合金涂层  等离子熔覆  神经网络  冲击韧性  模拟

Prediction of impact toughness of plasma-clad low-carbon Fe-Ni alloy coating by different models
HU Mingqiang,HU Yongjun,LI Lante,ZOU Xiaofeng,LI Feng,SHU Chang. Prediction of impact toughness of plasma-clad low-carbon Fe-Ni alloy coating by different models[J]. Electroplating & Finishing, 2021, 40(6): 421-426. DOI: 10.19289/j.1004-227x.2021.06.004
Authors:HU Mingqiang  HU Yongjun  LI Lante  ZOU Xiaofeng  LI Feng  SHU Chang
Affiliation:(School of Materials and Energy,Guangdong University of Technology,Guangzhou 510006,China)
Abstract:Low-carbon Fe-Ni alloy coatings were prepared on high-manganese steel Mn13 by plasma cladding.A BP(back propagation)neural network model and a particle swarm optimization(PSO)based BP neural network model were established with cladding current,sprinkler scanning velocity,ionic gas flow rate,and heat treatment temperature as input parameters,and the impact toughness as the output parameter,and compared with the linear regression model representing the relationship between impact toughness and heat treatment temperature.The results showed that the average relative error was 7.06%for the linear regression model,6.12%for the BP neural network model,and 3.03%for the PSO-BP model which had the smallest error between the predicted result and the measured value.
Keywords:high-manganese steel  iron-nickel alloy coating  plasma cladding  neural network  impact toughness  simulation
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号