首页 | 本学科首页   官方微博 | 高级检索  
     


Learning low-rank Mercer kernels with fast-decaying spectrum
Authors:Binbin PanAuthor Vitae  Pong C. YuenAuthor Vitae
Affiliation:a School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou, China
b School of Information Science and Technology, Sun Yat-sen University, Guangzhou, China
c Department of Computer Science, Hong Kong Baptist University, Kowloon, Hong Kong
Abstract:Low-rank representations have received a lot of interest in the application of kernel-based methods. However, these methods made an assumption that the spectrum of the Gaussian or polynomial kernels decays rapidly. This is not always true and its violation may result in performance degradation. In this paper, we propose an effective technique for learning low-rank Mercer kernels (LMK) with fast-decaying spectrum. What distinguishes our kernels from other classical kernels (Gaussian and polynomial kernels) is that the proposed always yields low-rank Gram matrices whose spectrum decays rapidly, no matter what distribution the data are. Furthermore, the LMK can control the decay rate. Thus, our kernels can prevent performance degradation while using the low-rank approximations. Our algorithm has favorable in scalability—it is linear in the number of data points and quadratic in the rank of the Gram matrix. Empirical results demonstrate that the proposed method learns fast-decaying spectrum and significantly improves the performance.
Keywords:Low-rank kernel   Fast-decaying spectrum   Spectrum of Gram matrices
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号