首页 | 本学科首页   官方微博 | 高级检索  
     

多子群粒子群集成神经网络
引用本文:潘希姣. 多子群粒子群集成神经网络[J]. 安徽建筑工业学院学报, 2007, 15(2): 38-40. DOI: 10.3969/j.issn.1006-4540.2007.02.012
作者姓名:潘希姣
作者单位:安徽交通职业技术学院汽车与机械工程系,合肥,230051
摘    要:为了使参加神经网络集成的个体差异度较大,从而提高网络集成的泛化能力,本文提出一种新的基于多子群粒子群算法的神经网络集成方法.每个子群通过补充差异度独立训练出一批神经网络,从每个子群中选择一个最优个体参加网络集成,实验使用了UCI标准数据集.实验证明,该算法的识别能力要好于Boosting、Bagging等传统方法.

关 键 词:神经网络集成  粒子群优化算法
文章编号:24448066
修稿时间:2007-01-23

Artificial neural network ensemble based on multi-sub-swarm particle swarm optimization
PAN Xi-jiao. Artificial neural network ensemble based on multi-sub-swarm particle swarm optimization[J]. Journal of Anhui Institute of Architecture(Natural Science), 2007, 15(2): 38-40. DOI: 10.3969/j.issn.1006-4540.2007.02.012
Authors:PAN Xi-jiao
Affiliation:Dept. of Automobile and Machinery Engineering, Anhui College of Vocational Technology of Communications, Hefei 230051, China
Abstract:To improve the generalization capability of neural network ensemble and enlarge the diversity of every individual artificial neural network(ANN),a novel ANN ensembles based on multi-sub-swarm particle swarm optimization were proposed.Each sub-swarm trains different ANN through complementary diversity.The best individual was chosen from each sub-swarm to take part in the ensemble.The experiments used UCI benchmark datasets,the experimental results show that the recognition rate of this algorithm is better than the Boosting and Bagging algorithm.
Keywords:Artificial neural network ensemble  Particle swarm optimization
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号