首页 | 本学科首页   官方微博 | 高级检索  
     

基于粗糙集的表情特征选择
引用本文:段丽,张建明. 基于粗糙集的表情特征选择[J]. 计算机工程与应用, 2010, 46(32): 177-179. DOI: 10.3778/j.issn.1002-8331.2010.32.049
作者姓名:段丽  张建明
作者单位:江苏大学 计算机科学与通信工程学院,江苏 镇江 212013
基金项目:国家自然科学基金,江苏大学高级人才科研启动基金
摘    要:
为解决取得特征向量维数过高问题,提出了一种改进的粗糙集属性约简算法。运用几何特征点方法得到人脸表情的局部特征向量,引入粗糙集理论,用改进的属性约简算法对提取到的表情特征进行优化选择,去掉冗余特征和对表情分类无用的不相关信息。实验结果显示,该方法不仅实现方便,识别率高,识别所用的时间也大大减少,充分表明了该方法的有效性。

关 键 词:粗糙集  特征选择  几何特征点  表情分类  
收稿时间:2009-03-26
修稿时间:2009-6-16 

Expression features selection based on rough set
DUAN Li,ZHANG Jian-ming. Expression features selection based on rough set[J]. Computer Engineering and Applications, 2010, 46(32): 177-179. DOI: 10.3778/j.issn.1002-8331.2010.32.049
Authors:DUAN Li  ZHANG Jian-ming
Affiliation:College of Computer Science and Communications Engineering,Jiangsu University,Zhenjiang,Jiangsu 212013,China
Abstract:
In order to resolve the problem that the feature vector dimension is too high,rough set attribute reduction algorithm applied in expression features selection is advanced.It can acquire local expression features vectors using geometrical feature points method.Rough set theory is introduced,and the local expression features are optimized and selected with an attribute reduction algorithm of rough set.Redundant features and irrelated information to expression classification are also eliminated.Experimental results show that this method can be realized simply.High recognition rate and speed also indicate the effect of this facial expression features selection.
Keywords:rough set  features selection  geometrical feature points  expression classification
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号