首页 | 本学科首页   官方微博 | 高级检索  
     

模拟数字电路故障诊断新方法
引用本文:谢涛,何怡刚,侯玉宝,朱彦卿. 模拟数字电路故障诊断新方法[J]. 半导体技术, 2007, 32(7): 558-561,569
作者姓名:谢涛  何怡刚  侯玉宝  朱彦卿
作者单位:湖南大学,电气与信息工程学院,长沙,410082;湖南涉外经济学院,电气与信息工程学部,长沙,410205
基金项目:国家自然科学基金 , 高等学校博士学科点专项科研项目 , 湖南省自然科学基金 , 教育部跨世纪优秀人才培养计划
摘    要:利用小波变换与神经网络相结合的方法,采用能量分布特征提取方法和改进BP算法,给出了一种基于小波变换和BP神经网络相结合的模拟电路故障诊断方法.用正弦信号仿真模拟电路,应用小波变换对模拟电路的采样信号进行多尺度分解,再进行能量分布特征提取,然后利用神经网络对各种状态下的特征向量进行分类识别,实现模拟电路故障诊断.在用神经网络诊断模拟电路的基础上,进行了将神经网络用于数字电路单故障诊断的研究.对两者的实例电路仿真结果表明,神经网络可以有效、方便地实现电路的故障检测和定位,准确率高,为故障诊断的研究提供了一种新思路.

关 键 词:模拟电路  数字电路  故障诊断  小波变换  神经网络
文章编号:1003-353X(2007)07-0558-04
修稿时间:2006-10-07

New Method for Fault Diagnosis of Analog and Digital Circuits
XIE Tao,HE Yi-gang,HOU Yu-bao,ZHU Yan-qing. New Method for Fault Diagnosis of Analog and Digital Circuits[J]. Semiconductor Technology, 2007, 32(7): 558-561,569
Authors:XIE Tao  HE Yi-gang  HOU Yu-bao  ZHU Yan-qing
Affiliation:1. College of Electrical and Information Engineering, Hunan University, Changsha 410082, China; 2. Department of Electrical and Information Engineering, Hunan International Economic University, Changsha 410205, China
Abstract:A method of fault diagnosis for analogue circuit based on the combination of BP neural network(BPNN)with wavelet transformation was presented,using the method of drawing energy feature and improved BP algorithm.A high-pass filter was stimulated with sinusoid input,and its output was sampled in time domain to collect training data for neural network.The collected data was preprocessed by WT to generate fault features.Feature vectors under certain states could be classified using neural network.Based on diagnosing anlog circuit by neural network,researched the method diagnosing the single fault for digital circuit by neural network.The results shown that the neural network can detect and locate circuit fault effectively and expediently,which provides a new method for fault diagnose.
Keywords:analog circuit  digital circuit  fault diagnosis  wavelet transform  neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号