首页 | 本学科首页   官方微博 | 高级检索  
     


Properties of super heat-resistant silicon carbide fibres with in situ BN coating
Affiliation:1. College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China;2. Key Laboratory of High Performance Ceramic Fibers (Xiamen University), Ministry of Education, Xiamen 361005, China;1. School of Materials Science and Engineering, Harbin Institute of Technology (Weihai), Weihai 264209, PR China;2. School of Science, Lanzhou University of Technology, Lanzhou 730050, PR China;3. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China;4. School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, Shandong, PR China;1. CNR-ISTEC, Inst. of Science and Technology for Ceramics, Via Granarolo 64, 48018 Faenza, Italy;2. INFN – Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Italy;3. Department of Industrial Engineering, University of Padova, Via Venezia 1, 35131 Padova, Italy;1. State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, China;2. Shenzhen Research Institute, Central South University, Shenzhen 518057, China;1. Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia;2. CAN Superconductors, Ringhofferova 66, 251 68 Kamenice, Czech Republic;3. Faculty of Chemical Technology, University of Chemistry and Technology, Technicka 5, 166 28 Prague 6, Czech Republic
Abstract:An in situ BN coating was prepared on the surface of a nearly stoichiometric continuous SiC fibre with trademark Cansas-3301 (C3). The coated fibre was then subjected to continuous pyrolysis at 1800 °C, obtaining a fibre named Cansas-BN-1800 (C18). After annealing in Ar at 1500 °C for 1 h, the strength retention ratio of C3 was 49%, and that of C18 was almost unchanged. The strength decrease of the C3 fibre was mainly caused by the formation of surface defects resulting from fibre decomposition and active oxidation. However, the in situ BN coating on C18 protected the fibre from forming surface defects, resulting in high strength. Due to slight growth of the grain and purification of the grain boundary during fast heating at 1800 °C, C18 showed excellent creep resistance in the range of 1200–1500 °C.
Keywords:SiC fibres  In situ BN coating  Heat-treatment  Creep resistance
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号