首页 | 本学科首页   官方微博 | 高级检索  
     


Hydration mechanisms of smithsonite from DFT-D calculations and MD simulations
Affiliation:1. School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China;2. College of Resources and Metallurgy, Guangxi University, Nanning 530004, China
Abstract:Investigation on the mineral?water interactions is crucial for understanding the subsequent interfacial reactions. Currently, the hydration mechanisms of smithsonite are still obscure. In this paper, the adsorption of H2O at different coverage rates on smithsonite (1 0 1) surface was innovatively investigated using density-functional theory (DFT) calculations and molecular dynamics (MD) simulations by analyzing adsorption model, interaction energy, atomic distance, density of state, electron density difference, concentration profile, radial distribution function and self-diffusion coefficient. We found that single H2O preferred to be dissociated on smithsonite (1 0 1) surface via the interaction of surface Zn with the Ow of H2O and H-bond between Hw of H2O and surface Os. However, dissociation adsorption and molecular adsorption coexisted on the smithsonite surface at a high coverage rate of H2O, and dissociation adsorption remained the main adsorption mechanism. Moreover, we found the interaction between smithsonite surface and H2O was weakened as a function of H2O coverage, which was because the presence of interlayer H2O and different layers of H2O decreased the reactivity of the smithsonite surface. The H2O is mainly adsorbed on the smithsonite surface by forming three layers of H2O (about 10–15 Å), with the ordering degree gradually decreasing.
Keywords:Smithsonite surface  DFT  MD  Coverage rate
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号