Tunnel generation and locking stimulated Raman radiation components |
| |
Authors: | Lugovoi V. |
| |
Affiliation: | General Physics Institute, Academy of Sciences of the U.S.S.R., Moscow, U.S.S.R.; |
| |
Abstract: | Stimulated Raman radiation is considered in a ring optical resonator. It is supposed that the resonator is partly filled with a condensed medium at the full length of the medium close to several tunnel lengths. A Raman-active medium and an optical waveguide are assumed to occupy a part of the condensed medium. The feasibility is shown of tunnel generation and synchronization of a great number of Stokes components of stimulated Raman radiation. Here, femtosecond light pulses are shown to be formed in a spacing adjacent to the Raman-active medium, the pulses being single over the periodT = 2pi/omega_{R}(ωRis the Raman frequency shift). Predicted and considered also are tunnel generation and locking of new light modes in an optical parametric oscillator. The effects are due to a correction for the dispersion of the full effective refractive index of the medium inside the resonator. Numerical calculations of the correction for a glass thin-film optical waveguide, quartz, and the Raman-active media CaCO3, C6H6, CS2inside the resonator are represented. Here, five or six Stokes components are shown to be generated and locked for CaCO3and C6H6, eight Stokes components for CS2. A similar numerical calculation is represented for the active medium LiNbO3in the corresponding optical parameteric oscillator. Here, new modes covering a frequency bandwidth of 5000 cm-1are shown to be feasible. Noted and discussed is also a higher-order correction for the effective refractive index dispersion making it feasible to broaden the frequency bandwidth for tunnel generation and locking. |
| |
Keywords: | |
|
|