首页 | 本学科首页   官方微博 | 高级检索  
     


Design and implementation of a delay-optimized universal programmable routing circuit for FPGAs
Authors:Wu Fang  Zhang Huowen  Lai Jinmei  Wang Yuan  Chen Liguang  Duan Lei  Tong Jiarong
Affiliation:State Key Laboratory of ASIC & System,Fudan University,Shanghai 201203,China
Abstract:This paper presents a universal field programmable gate array (FPGA) programmable routing circuit,focusing primarily on a delay optimization. Under the precondition of the routing resource's flexibility and routability, the number of programmable interconnect points (PIP) is reduced, and a multiplexer (MUX) plus a BUFFER structure is adopted as the programmable switch. Also, the method of offset lines and the method of complementary hanged end-lines are applied to the TILE routing circuit and the I/O routing circuit, respectively. All of the above features ensure that the whole FPGA chip is highly repeatable, and the signal delay is uniform and predictable over the total chip. Meanwhile, the BUFFER driver is optimized to decrease the signal delay by up to 5%. The proposed routing circuit is applied to the Fudan programmable device (FDP) FPGA, which has been taped out with an SMIC 0.18-μm logic 1P6M process. The test result shows that the programmable routing resource works correctly, and the signal delay over the chip is highly uniform and predictable.
Keywords:FPGA  programmable routing resource  delay  MUX  BUFFER
本文献已被 万方数据 等数据库收录!
点击此处可从《半导体学报》浏览原始摘要信息
点击此处可从《半导体学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号