首页 | 本学科首页   官方微博 | 高级检索  
     


On the intrinsic limits of pentacene field-effect transistors
Authors:J H Schn  Ch Kloc  B Batlogg
Affiliation:J. H. Schön, Ch. Kloc,B. Batlogg
Abstract:Performance limits for pentacene based field-effect transistors are investigated using single- and polycrystalline devices. Whereas the charge transport in single crystalline devices is band-like with mobilities up to 105 cm2/V s at low temperatures, temperature-independent or thermally activated charge transport can be observed in polycrystalline thin film transistors depending on the growth conditions. Trapping and grain boundary effects significantly influence the temperature dependence of the field-effect mobility. Furthermore, the device performance of p-channel transistors (mobility, on/off ratio, sub-threshold swing) decreases slightly with increasing trap densities. However, the formation of an electron accumulation layer (n-channel) is significantly stronger affected by trapping processes in the thin film devices. Single crystalline p-channel devices exhibit at room temperature mobilities as high as 3.2 cm2/V s, on/off-ratios exceeding 109, and sub-threshold swings as low as 60 mV/decade. Slightly diminished values are obtained for transistors working as n-channel devices (2 cm2/V s, 108, and 150 mV/decade).
Keywords:Pentacene  Field-effect transistor  Mobility  Grain boundaries
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号