首页 | 本学科首页   官方微博 | 高级检索  
     


A Fast Settling HBT Reference Amplifier for High Speed Digital-to-Analog Converters
Authors:Yihong?Dai  author-information"  >  author-information__contact u-icon-before"  >  mailto:yihongd@ee.byu.edu"   title="  yihongd@ee.byu.edu"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author,Donald?T.?Comer,David?J.?Comer
Affiliation:(1) Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA
Abstract:This paper proposes a fast settling reference amplifier for use with a current-steering Digital-to-Analog Converter (DAC). The reference amplifier utilizes an open loop architecture, resulting in a bandwidth of 2.5 GHz, small chip area and low power. The wide bandwidth of the reference amplifier is shown to be important for fast settling of DAC current output. The reference amplifier is also able to generate a reference current that tracks fast changes of reference voltage, thus is useful in applications such as multiplying DACs and transversal filters. The proposed design was fabricated using a 1 μm GaAs HBT process. The prototype reference amplifier achieves a temperature coefficient of 92 ppm/°C over a temperature range of 0–100°C and the reference current changes only ±2.14% when the power supply varies ±0.2 V.Yihong Dai received his B.S. and M.Eng. degrees in Electrical Engineering from Shanghai JiaoTong University, Shanghai, China in 1993 and 1996, respectively. From 1996 to 1998, he enjoyed his industrial experiences in Shanghai with semiconductor companies like Shanghai Nortel Semiconductor and Motorola Electronics (China) Shanghai Branch. Since 1998, he has been a research assistant at the Analog and Mixed-signal Laboratory of the Electrical Engineering Department of Brigham Young University working toward his Ph.D. During the summer of 1999, he was with AMI semiconductor Utah Research and Design Center where he developed a threshold voltage based CMOS voltage reference architecture. In the summer of 2001, he was with Ultra Design LLC where he designed a reference amplifier for high speed digital-to-analog converters. His research interest includes voltage reference, reference amplifier and high speed data converters in both CMOS and GaAs processes.Donald T. Comer received the B.S., M.S., and Ph.D. degrees from San Jose State University, the University of California (Berkeley), and the University of Santa Clara, respectively, all in electrical engineering. He began teaching at San Jose State University in 1961 and mixed his teaching and industrial work until he left San Jose State University in 1979. He has worked for California Technical Industries, IBM Corp., Mobility Systems, Precision Monolithics, Storage Technology Corp., and Analog Devices during his career. He founded the AMI Utah Research and Design Center in 1998 that specializes in MOS design. In 2002, Dr. Comer founded Ultra Design, a design center that specializes in high-frequency heterojunction circuit designs. He holds fifteen patents and has published over 50 articles dealing with solid-state and integrated circuits. He has published five textbooks in the field of large-signal and integrated circuits. He formerly held the Quentin Berg Chair at Penn State Harrisburg from 1990 to 1995. He is now a professor of electrical and computer engineering at Brigham Young University where he held the Endowed Chair of Engineering from 1995 to 1998.David J. Comer received the B.S., M.S., and Ph.D. degrees from San Jose State University, the University of California (Berkeley), and Washington State University, respectively, all in electrical engineering. He has worked for IBM Corp., Pacific Electromagnetics, Lawrence Livermore Laboratories, and Intel Corporation. He began his teaching career at the University of Idaho and has taught at the University of Calgary and California State University, Chico. He is presently a professor of electrical and computer engineering at Brigham Young University. He served as Chairman of the Division (Dean) of Engineering at CSU, Chico and as Department Chair at BYU.While at CSU, Chico, Dr. Comer served on the statewide Engineering Liaison Committee and served as Chair of the Council of California State University Deans of Engineering.Dr. Comer has published twelve textbooks and over 60 articles in the field of circuit design. He has contributed sections to the Encyclopedia of Physical Science and Technology and holds seven patents. He was given the Professional Achievement Award at CSU, Chico and was named the Outstanding Teacher of Engineering at BYU. He has also held the College of Engineering Research Chair at Brigham Young University.
Keywords:high speed digital-to-analog converter  current steering DAC  glitch reduction  settling time  multiplying DAC  transversal filter
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号