首页 | 本学科首页   官方微博 | 高级检索  
     


Interfacial reaction and shear strength of SnAgCu-xNi/Ni solder joints during aging at 150 °C
Authors:Pei Yao  Ping Liu  Jim Liu
Affiliation:a College of Material Science and Engineering, Tianjin University, No. 92 Weijin Road, Tianjin 300072, PR China
b PDR-Asia, Motorola (China) Electronics Ltd., Tianjin 300457, PR China
c Institute of Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia
Abstract:The interfacial microstructure and shear strength of Sn3.8Ag0.7Cu-xNi (SAC-xNi, x = 0.5, 1, and 2) composite solders on Ni/Au finished Cu pads were investigated in detail after aging at 150 °C for up to 1000 h. The interfacial characteristics of composite solder joints were affected significantly by the weight percentages of added Ni micro-particles and aging time. After aging for 200 h, the solder joints of SAC, SAC-0.5Ni and -1Ni presented duplex intermetallic compound (IMC) layers regardless of the initial interfacial structure on as-reflowed joints, whose upper and lower IMC layers were comprised of (CuNi)6Sn5 and (NiCu)3Sn4, respectively. Only a single (NiCu)3Sn4 IMC layer was ever observed at the SAC-2Ni/Ni interface on whole aging process. Based on the compositional analysis, the amount of Ni within the IMC regions increased as the proportion of Ni addition increased. The IMC (NiCu)3Sn4 layer thickness on the interface of SAC and SAC-0.5Ni grew more slowly when compared to that of SAC-1Ni and -2Ni, while for the (CuNi)6Sn5 layer the reverse is true. Except the IMCs sizes are increased with increased aging time, the interfacial IMCs tended to transfer their morphologies to polyhedra. In all composite joints testing, the shear strengths were approximately equal to non-composite joints. The fracturing observed during shear testing of composite joints occurred in the bulk solder, indicating that the SAC-xNi/Ni solder joints had a desirable joint reliability.
Keywords:(A)Composite materials  (A)Intermetallics (IM)  (C)Microstructure  (C)Scanning electron microscopy (SEM)
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号