首页 | 本学科首页   官方微博 | 高级检索  
     


Complexity reduction of digital filters using shift inclusive differential coefficients
Authors:Choo  H Muhammad  K Roy  K
Affiliation:Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA;
Abstract:We present a graph theoretical methodology that reduces the implementation complexity of the multiplication of a constant vector and a scalar. The complexity of implementation is defined as the required amount of computations like additions. The proposed approach is called minimally redundant parallel (MRP) optimization and is mainly presented in a finite impulse response (FIR) filtering framework to obtain a low-complexity multiplierless implementation. The key idea is to expand the design space using shift inclusive differential coefficients (SIDCs) together with computation reordering using a graph theoretic approach to obtain maximal computation sharing. The problem is formulated using a graph in which vertices and edges represent coefficients and computational cost (number of resources). The multiplierless solution is obtained by solving a set cover problem on the vertices in the graph. A simple polynomial run time algorithm based on a greedy approach is presented. The proposed approach is compared with common-subexpression elimination to show slightly better results and is combined with it for further reduction of complexity. Simulation results show that 50-60% complexity reduction is achieved by only applying the MRP algorithm, and 70% complexity reduction is obtainable by combining it with common-subexpression elimination under a delay constraint of two or three.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号