首页 | 本学科首页   官方微博 | 高级检索  
     


Cloud fraction and cloud shadow property retrievals fromcoregistered TIMS and AVIRIS imagery: the use of cloud morphology forregistration
Authors:Feind  RE Welch  RM
Affiliation:Inst. of Atmos. Sci., South Dakota Sch. of Mines & Technol., Rapid City, SD;
Abstract:The Thermal Infrared Multispectral Scanner (TIMS) and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) were operated simultaneously from the ER2 aircraft during a March 1990 test over the Rio Bravo region, Belize. Coregistration of the imagery obtained by these two instruments is necessary to utilize the data effectively. A technique for registering the TIMS imagery to AVIRIS imagery is presented. It takes advantage of the morphology of the fair weather cumulus (FWC) clouds present in the imagery for estimating inter-sensor distortions. It relies on an iterative process in which skew, nearest neighbor sampling, and cross-correlation (1D and 2D) are applied. Comparison between the AVIRIS three-band ratio (3BR) imagery and the coregistered TIMS imagery shows that TIMS is superior in detecting thin cloud and cloud edge pixels, especially over shadowed background. Although the seven scenes analyzed in the study were obtained within the same one-hour time period and over the same geographical region, the optimum temperature threshold for cloud detection, with respect to the background temperature, varies significantly from 2.1 to 3.3°C. These values agree with the AVIRIS 3BR cloud fraction equivalent temperature thresholds to within 0.5°C. When applying a cloud shadow mask from the AVIRIS near infrared imagery to the coregistered TIMS background imagery, a 1°C temperature differential is found between the shadowed and nonshadowed background. This significant radiative cooling by Fair Weather Cumulus cloud shadows could introduce errors in surface emissivity retrievals by other Earth Observing System (EOS) investigators
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号