首页 | 本学科首页   官方微博 | 高级检索  
     


Phase-domain fractional-N frequency synthesizers
Authors:ElSayed  AM Elmasry  MI
Affiliation:Univ. of Waterloo, Ont., Canada;
Abstract:The concept of phase-domain fractional-N frequency synthesis is presented. Synthesizers using this architecture can achieve fast frequency switching without limiting the minimum channel spacing. In this architecture, a numerical phase comparator is used in conjunction with weighting coefficients, as a linear weighted phase-frequency detector. The synthesizer output spur level is determined by two factors. Namely, the delay of the numerical phase comparator, and the accuracy of the digital-to-analog convertor (DAC) used to convert the phase error to the analog domain. A novel second-order timing-error cancelation scheme is proposed to eliminate the effect of the phase comparator delays. Using this technique together with a 10-bit accuracy DAC, a maximum spur level of less than -65 dBc is simulated for a 900-MHz synthesizer. The settling time of the simulated synthesizer is less than 7 /spl mu/s, and is independent of the channel spacing. The details of the synthesizer architecture, design considerations, and system-level simulations are presented. Implementation issues including the DAC accuracy and timing-error effects are discussed extensively throughout the text.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号