首页 | 本学科首页   官方微博 | 高级检索  
     


Reactive Oxygen Species–Activatable Liposomes Regulating Hypoxic Tumor Microenvironment for Synergistic Photo/Chemodynamic Therapies
Authors:Zhihao Zhao  Weiqi Wang  Chenxi Li  Yiqiu Zhang  Tianrong Yu  Renfei Wu  Jiayue Zhao  Zhuang Liu  Jian Liu  Haijun Yu
Abstract:Tumors have adapted various cellular antidotes and microenvironmental conditions to subsist against photodynamic therapy (PDT) and chemodynamic therapy (CDT). Here, the development of reactive oxygen species (ROS)‐activatable liposomes (RALP) for therapeutic enhancement by simultaneously addressing the critical questions in PDT and CDT is reported. The design of RALP@HOC@Fe3O4 features ROS‐cleavable linker molecules for improved tumor penetration/uptake and ondemand cargo releasing, and integration of Fe3O4 and an oxaliplatin prodrug for smart regulation of hypoxia tumor microenvironment. Glutathione stored by the tumor cells is consumed by the prodrug to produce highly toxic oxaliplatin. Depletion of glutathione not only avoids the undesired annihilation of ROS in PDT, but also modulates the chemical specie equilibria in tumors for H2O2 promotion, leading to greatly relieved tumor hypoxia and PDT enhancement. Synergistically, Fe (II) in the hybrid RALP formulation can be fuelled by H2O2 to generate ?OH in the Fenton reaction, thus elevating CDT efficiency. This work offers a strategy for harnessing smart, responsive, and biocompatible liposomes to enhance PDT and CDT by regulating tumor microenvironment, highlighting a potential clinical translation beneficial to patients with cancer.
Keywords:chemodynamic therapy  Fenton reaction  photodynamic therapy  tumor hypoxia  tumor microenvironment
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号