首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanism of Low‐Temperature Protonic Conductivity in Bulk,High‐Density,Nanometric Titanium Oxide
Authors:Ilenia G Tredici  Filippo Maglia  Chiara Ferrara  Piercarlo Mustarelli  Umberto Anselmi‐Tamburini
Affiliation:University of Pavia, Department of Chemistry, Pavia, Italy
Abstract:Uncovering the mechanism of low‐temperature protonic conduction in highly dense nanostructured metal oxides opens the possibility to exploit the application of simple ceramic electrolytes in proton exchange fuel cells, overcoming the drawbacks related to the use of polymeric membranes. High proton conducting, highly dense (relative density 94 vol%) TiO2 samples are prepared by a fast pressure‐assisted sintering method, which allows leaving behind an interconnected network of open nanoporosity. Solid‐state 1H NMR is used to characterize the presence of strongly associated water confined in the nanopores and hydroxyl moieties bonded to the pores walls, providing a model to explain the unusually high protonic conductivity. At the lowest temperatures (T < 55 °C) protons hop between confined water molecules, according to a Grotthuss mechanism. The resulting conductivity values are however much higher than those of liquid water, indicating a significant increase in the charge carriers concentration. At higher temperatures (up to 450 °C) unexpected proton conduction is still present, thanks to the persistence of hydroxyl groups, derived from water chemisorption, which still produce protons by ionization. The phenomenon is strongly dependent on grain size, and not explicable by simple geometric brick‐layer models, suggesting that the enhanced ionization could rely on space charge region effects.
Keywords:proton transport  nanostructured titania  pressure‐assisted rapid sintering  nanoporosity  solid‐state NMR
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号