首页 | 本学科首页   官方微博 | 高级检索  
     


Lithium Tritelluride as an Electrolyte Additive for Stabilizing Lithium Deposition and Enhancing Sulfur Utilization in Anode-Free Lithium–Sulfur Batteries
Authors:Tianxing Lai  Amruth Bhargav  Arumugam Manthiram
Affiliation:Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78721 USA
Abstract:Despite the potential to become the next-generation energy storage technology, practical lithium–sulfur (Li–S) batteries are still plagued by the poor cyclability of the lithium-metal anode and sluggish conversion kinetics of S species. In this study, lithium tritelluride (LiTe3), synthesized with a simple one-step process, is introduced as a novel electrolyte additive for Li–S batteries. LiTe3 quickly reacts with lithium polysulfides and functions as a redox mediator to greatly improve the cathode kinetics and the utilization of active materials in the cathode. Moreover, the formation of a Li2TeS3/Li2Te-enriched interphase layer on the anode surface enhances ionic transport and stabilizes Li deposition. By regulating the chemistry on both the anode and cathode sides, this additive enables a stable operation of anode-free Li–S batteries with only 0.1 m concentration in conventional ether-based electrolytes. The cell with the LiTe3 additive retains 71% of the initial capacity after 100 cycles, while the control cell retains only 23%. More importantly, with high utilization of Te, the additive enables significantly better cyclability of anode-free pouch full-cells under lean electrolyte conditions.
Keywords:anode-free cells  cathode kinetics  electrolyte additives  lithium anode protection  lithium–sulfur batteries
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号