首页 | 本学科首页   官方微博 | 高级检索  
     


Advances in Manganese‐Based Oxides Cathodic Electrocatalysts for Li–Air Batteries
Authors:Bao Liu  Yinglun Sun  Li Liu  Shan Xu  Xingbin Yan
Affiliation:1. Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P. R. China;2. State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P. R. China;3. University of Chinese Academy of Sciences, Beijing, P. R. China
Abstract:Li–air batteries, characteristic of superhigh theoretical specific energy density, cost‐efficiency, and environment‐friendly merits, have aroused ever‐increasing attention. Nevertheless, relatively low Coulomb efficiency, severe potential hysteresis, and poor rate capability, which mainly result from sluggish oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) kinetics, as well as pitiful cycle stability caused by parasitic reactions, extremely limit their practical applications. Manganese (Mn)‐based oxides and their composites can exhibit high ORR and OER activities, reduce charge/discharge overpotential, and improve the cycling stability when used as cathodic catalyst materials. Herein, energy storage mechanisms for Li–air batteries are summarized, followed by a systematic overview of the progress of manganese‐based oxides (MnO2 with different crystal structures, MnO, MnOOH, Mn2O3, Mn3O4, MnOx, perovskite‐type and spinel‐type manganese oxides, etc.) cathodic materials for Li–air batteries in the recent years. The focus lies on the effects of crystal structure, design strategy, chemical composition, and microscopic physical parameters on ORR and OER activities of various Mn‐based oxides, and even the overall performance of Li–air batteries. Finally, a prospect of the research for Mn‐based oxides cathodic catalysts in the future is made, and some new insights for more reasonable design of Mn‐based oxides electrocatalysts with higher catalytic efficiency are provided.
Keywords:electrocatalytic activity  Li–  air batteries  manganese‐based oxides  oxygen evolution reactions  oxygen reduction reactions
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号