首页 | 本学科首页   官方微博 | 高级检索  
     


Importance of MEK in neutrophil microbicidal responsiveness
Authors:GP Downey  JR Butler  H Tapper  L Fialkow  AR Saltiel  BB Rubin  S Grinstein
Affiliation:Toronto Hospital, and Department of Medicine, University of Toronto, Ontario, Canada. gregory.downey@utoronto.ca
Abstract:Exposure of neutrophils to inflammatory stimuli such as the chemoattractant FMLP leads to activation of responses including cell motility, the oxidative burst, and secretion of proteolytic enzymes. A signaling cascade involving sequential activation of Raf-1, mitogen-activated protein kinase (MEK), and extracellular signal regulated kinase (ERK) is also rapidly activated after agonist exposure. The temporal relationship between these events suggests that the kinases may be involved in triggering the effector functions, but direct evidence of a causal relationship is lacking. To assess the role of the MEK/ERK pathway in the activation of neutrophil responses, we studied the effects of PD098059, a potent and selective inhibitor of MEK. Preincubation of human neutrophils with 50 microM PD098059 almost completely (>90%) inhibited the FMLP-induced activation of MEK-1 and MEK-2, the isoforms expressed by neutrophils. This dose of PD098059 virtually abrogated chemoattractant-induced tyrosine phosphorylation and activation of ERK-1 and ERK-2, implying that MEKs are the predominant upstream activators of these mitogen-activated protein kinases. Pretreatment of neutrophils with the MEK antagonist inhibited the oxidative burst substantially and phagocytosis only moderately. In addition, PD098059 antagonized the delay of apoptosis induced by exposure to granulocyte-macrophage CSF. However, the effects of PD098059 were selective, as it failed to inhibit other responses, including chemoattractant-induced exocytosis of primary and secondary granules, polymerization of F-actin, chemotaxis, or activation of phospholipase A2. We conclude that MEK and ERK contribute to the activation of the oxidative burst and phagocytosis, and participate in cytokine regulation of apoptosis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号