首页 | 本学科首页   官方微博 | 高级检索  
     


Backstepping Based Global Exponential Stabilization of a Tracked Mobile Robot with Slipping Perturbation
Authors:Bo Zhou  Jianda Han  Xianzhong Dai
Affiliation:1. Key Laboratory of Measurement and Control of CSE (School of Automation, Southeast University),Ministry of Education, Nanjing 210096, P. R. China
2. Shenyang Institute of Automation, CAS, Shenyang 110016, P. R. China
Abstract:While the nonholonomic robots with no-slipping constraints are studied extensively nowadays, the slipping effect is inevitable in many practical applications and should be considered necessarily to achieve autonomous navigation and control purposes especially in outdoor environments. In this paper the robust point stabilization problem of a tracked mobile robot is discussed in the presence of track slipping, which can be treated as model perturbation that violates the pure nonholonomic constraints. The kinematic model of the tracked vehicle is created, in which the slipping is assumed to be a time-varying parameter under certain assumptions of track-soil interaction. By transforming the original system to the special chained form of nonholonomic system, the integrator backstepping procedure with a state-scaling technique is used to construct the controller to stabilize the system at the kinematic level. The global exponential stability of the final system can be guaranteed by Lyapunov theory. Simulation results with different initial states and slipping parameters demonstrate the fast convergence, robustness and insensitivity to the initial state of the proposed method.
Keywords:tracked mobile robot  nonhoionomic system  stabilization  backstepping  Lyapunov function
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号