首页 | 本学科首页   官方微博 | 高级检索  
     

反应烧结碳化硅陶瓷内筒的损毁机制
作者姓名:陈俊红  闫明伟  肖品  米文俊  宿金栋  封吉圣  孙加林
作者单位:北京科技大学材料科学与工程学院,北京,100083;中国矿业大学 北京 机电与信息工程学院,北京,100083;山东圣川陶瓷材料有限公司,淄博,255000
基金项目:国家科技支撑计划资助项目(2013BAF09B01)
摘    要:以X射线衍射仪、扫描隧道电子显微镜、能量散射光谱仪等手段对在悬浮预热器内筒上使用前后的反应烧结碳化硅陶瓷进行分析,研究该陶瓷应用于悬浮预热器上的损毁机制.碳化硅陶瓷中残存金属硅和表面的碳化硅在高温使用工况下首先氧化成SiO2,SiO2在K2O (g)、Na2O (g)、KCl (g)、Na Cl (g)等蒸气以及氯化物作用下黏度降低,形成覆盖于陶瓷表面的氧化层,继而被高速的气固流体冲蚀和磨损掉,并导致新的界面出现.如此循环,使碳化硅陶瓷的外侧逐渐变薄和断裂,直至损毁.提高陶瓷的致密性和降低残余硅含量是改进反应烧结碳化硅陶瓷在悬浮预热器中使用性能的有效途径. 

关 键 词:预热器  内筒  烧结  碳化硅  损毁机理
收稿时间:2015-07-07

Damage mechanism of reaction sintering SiC ceramic inner cylinders
Affiliation:1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;2. School of Mechanical Electronic&Information Engineering, China University of Mining&Technology(Beijing), Beijing 100083, China;3. Shandong Shengchuan Ceramics Co., Ltd., Zibo 255000, China
Abstract:A reaction bonded SiC ceramic used in a suspension preheater inner cylinder was comparatively analyzed before and after use by X-ray diffractometer,scanning tunneling microscopy and energy dispersive spectroscopy,and its damage mechanism was studied. The results show that residual silicon metal in the Si C ceramic and silicon carbide in the surface are firstly oxidized into SiO2 under the high temperature atmosphere and the liquid viscosity of SiO2 decreases,resulting in the formation of an oxidation layer because of the existence of an alkaline steam of K2O(g),Na2O(g),KCl(g) and NaCl(g) and chlorides. Afterwards the oxidation layer is scoured and frayed by high-speed air flow,leading to a new interface. With the cycle repeating,the outside of the Si C ceramic becomes to be thinner little by little and appears to rupture till damage. As a result,the promotion of densification and the reduction of residual silicon metal are effective ways to improve the use ability of the reaction bonded Si C ceramic in a suspension preheater. 
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《》浏览原始摘要信息
点击此处可从《》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号