首页 | 本学科首页   官方微博 | 高级检索  
     

相比例对高压扭转Ti-6Al-4V合金晶粒细化及显微硬度的影响
引用本文:张文井,付杰,黄毅,丁桦,Terence G. Langdon.相比例对高压扭转Ti-6Al-4V合金晶粒细化及显微硬度的影响[J].材料与冶金学报,2015(4):298-304.
作者姓名:张文井  付杰  黄毅  丁桦  Terence G. Langdon
作者单位:1. 东北大学 材料与冶金学院,中国 沈阳,110819;2. 西部超导材料科技股份有限公司,中国 西安,710018;3. 南安普顿大学 工程与环境学院,英国 南安普顿SO17 1BJ;4. 南安普顿大学 工程与环境学院,英国 南安普顿SO17 1BJ; 南加州大学 航空航天,机械工程与材料科学学院,美国 洛杉矶CA 90089-1453
摘    要:冷轧态Ti-6Al-4V(TC4)合金经两种不同热处理制度处理之后,分别得到70%的等轴α相和30%的α+β片层组织(TC4-1)与25%的等轴α相和75%的α+β片层组织(TC4-2).等轴α相的晶粒尺寸分别为7.0±2μm和9.5±1.5μm.在室温下进行高压扭转,扭转过程中施加6.0 GPa的压力,扭转速度为1 r/min,分别扭转了1/4、5、10和20圈.随着扭转圈数和片层组织的增加,组织更为均匀.经20圈扭转变形后,TC4-1和TC4-2中的晶粒尺寸分别为115±30 nm和75±15 nm.随着片层组织的增加,显微硬度值显著升高.同时探讨了相比例对晶粒细化机制的影响.

关 键 词:Ti-6Al-4V合金  高压扭转  相比例  晶粒细化

Influence of phase volume fraction on grain refinement and microhardness of a Ti-6 Al-4 V alloy by high-pressure torsion
Abstract:A cold-rolled Ti-6Al-4V sheet was subjected to two different heat treatments respectively to obtain microstructures with different volume fraction of equiaxedαphase and lamellar (α+β). The heat treatments produced two different initial microstructures, one with 70% equiaxed α phase and 30% lamellar (α+β) (TC4-1) and the other with 25% equiaxed α phase and 75% lamellar (α+β) ( TC4 -2 ) . The grain sizes of the equiaxed α phase were 7. 0 ± 2 μm in TC4-1 and 9. 5 ± 1. 5 μm in TC4-2. Both TC4-1 and TC4-2 were processed by HPT at room temperature with a pressure of 6. 0 GPa and a rotation speed of 1 rpm to total numbers of revolutions, N, of 1/4, 5, 10 and 20. With the increase of the turns and volume fraction of lamellar structure, the microstrucutre became more uniform. The grain sizes after 20 turns of HPT were 115 ± 30 nm in TC4 -1 and 75 ± 15 nm in TC4 -2. Meanwhile, the microhardness increased significantly with the increase of the volume fractions of lamellar structure. The influence of phase volume fraction on the grain refinement mechanism was also investigated.
Keywords:Ti-6Al-4V alloy  high-pressure torsion  volume fraction  grain refinement
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号