首页 | 本学科首页   官方微博 | 高级检索  
     


Electronic properties and photodegradation ability of Nd-TiO2 for phenol
Affiliation:1. Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China;2. State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China;3. National Energy Center for Coal to Clean Fuels, Synfuels China Co., Ltd., Beijing 101400, China
Abstract:In this study, the photocatalytic activity of Nd-TiO2 photocatalysts obtained by common hydrothermal method was evaluated by practical experiments and theoretical calculations based on density functional theory (DFT). The synthesized photocatalysts were characterized by X-ray diffraction (XRD), N2 adsorption–desorption, Fourier transform infrared spectroscopy (FT-IR), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV–Vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) to study their physical/chemical properties. At the same time, the photoelectronic performance was also investigated. The photodegradation ability of as-prepared photocatalysts and the effect of Nd doped amount and photocatalysts dosage were investigated by the photodegradation of phenol (30 mg/L) under 400 W metal halide lamp (UV–Vis). The effect of Nd on electronic properties of TiO2 and adsorption ability of phenol were discussed. Results show the red-shift wavelength of 0.5 mol%Nd-TiO2, indicating that its absorption capacity is stronger than pristine TiO2 in the same wavelength range. The result of DFT calculations demonstrates that the optical bandgap of Nd-TiO2 is profoundly reduced, thus the light absorption ability is promoted, which will be responsible for the enhanced photocatalytic performance of Nd-TiO2. 0.5 mol% Nd is an optimum value for photodegradation phenol, and phenol can be completely degraded by 0.5 mol%Nd-TiO2 for 210 min, the higher catalytic performance is derived from the efficient separation of e/h+ pairs. Moreover, the adsorption energy calculations of phenol on TiO2 (101) and Nd-TiO2 (101) demonstrate that the Nd doping can significantly enhance the adsorption ability of phenol on catalyst surfaces because of the formation of Nd–O bonds. At last, the stability measurement through four recycles exhibits that 0.5 mol%Nd-TiO2 possesses excellent stability.
Keywords:Hydrothermal method  Density functional theory  Phenol  Photodegradation  Rare earths
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号