首页 | 本学科首页   官方微博 | 高级检索  
     


Utilization of Coke Oven Gas and Converter Gas in the Direct Reduction of Lump Iron Ore
Authors:Elsayed Abdelhady Mousa  Alexander Babich  Dieter Senk
Affiliation:1. Central Metallurgical Research and Development Institute (CMRDI), P.O Box 87, Helwan, Cairo, Egypt
2. Department of Ferrous Metallurgy, RWTH, Aachen University, D-52056, Aachen, Germany
Abstract:The application of off-gases from the integrated steel plant for the direct reduction of lump iron ore could decrease not only the total production cost but also the energy consumption and CO2 emissions. The current study investigates the efficiency of reformed coke oven gas (RCOG), original coke oven gas (OCOG), and coke oven gas/basic oxygen furnace gas mixtures (RCOG/BOFG and OCOG/BOFG) in the direct reduction of lump iron ore. The results were compared to that of reformed natural gas (RNG), which is already applied in the commercial direct reduction processes. The reduction of lump ore was carried out at temperatures in the range of 1073 K to 1323 K (800 °C to 1050 °C) to simulate the reduction zone in direct reduction processes. Reflected light microscopy, scanning electron microscopy, and X-ray diffraction analysis were used to characterize the microstructure and the developed phases in the original and reduced lump iron ore. The rate-controlling mechanism of the reduced lump ore was predicted from the calculation of apparent activation energy and the examination of microstructure. At 1073 K to 1323 K (800 °C to 1050 °C), the reduction rate of lump ore was the highest in RCOG followed by OCOG. The reduction rate was found to decrease in the order RCOG > OCOG > RNG > OCOG-BOF > RCOG-BOFG at temperatures 1173 K to 1323 K (900 °C to 1050 °C). The developed fayalite (Fe2SiO4), which resulted from the reaction between wüstite and silica, had a significant effect on the reduction process. The reduction rate was increased as H2 content in the applied gas mixtures increased. The rate-determining step was mainly interfacial chemical reaction with limitation by gaseous diffusion at both initial (20 pct reduction) and moderate (60 pct reduction) stages of reduction. The solid-state diffusion mechanism affected the reduction rate only at moderate stages of reduction.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号