首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of Partial Pressure of Sulfur and Oxygen on Distribution of Fe and Mn between Liquid Fe-Mn Oxysulfide and Molten Slag
Authors:Sun-Joong Kim  Hiroyuki Shibata  Jun Takekawa  Shin-Ya Kitamura  Katsunori Yamaguchi  Youn-Bae Kang
Affiliation:1. Graduate School of Engineering, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
2. Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, 980-8577, Japan
3. Iwate University, Morioka, 020-8511, Japan
4. Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, Hyojadong, Pohang, Kyungbuk, 790-784, Korea
Abstract:The authors proposed an innovative process for recovering Mn from steelmaking slag. The process starts with the sulfurization of steelmaking slag to separate P from Mn by the formation of a liquid sulfide phase (matte). Then, the obtained matte is weakly oxidized to make a Mn-rich oxide phase without P. High-purity Fe-Mn alloys can therefore be produced by the reduction of the Mn-rich oxide phase. However, to the authors?? knowledge, the sulfurization of molten slag containing P and Mn has not been sufficiently investigated. It was recently found that P was not distributed to the matte in equilibrium with the molten slag. To gain knowledge of the process??s development, it is important to investigate the influence of the partial pressures of sulfur and oxygen on the equilibrium distribution of Mn and Fe between the matte and the molten slag. In the current work, a mineralogical microstructure analysis of the matte revealed that the existence of the oxysulfide and metal phases was dependent on the partial pressure of sulfur and oxygen. The Mn content of the matte increased with partial pressure of sulfur while the O content of the matte decreased. In contrast, the ratio of Mn/Fe in the matte was constant when the metal phase of the matte was observed at a log $ P_{{{\text{O}}_{2} }} $ below ?11. These results also corresponded to the relationship between the activity coefficient ratio of MnS/FeS and the mole fraction of MnS/FeS in the matte. The ?? MnS/?? FeS value decreased exponentially as the mole fraction of MnS/FeS increased.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号