首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of artificial tribological layer on sliding wear behavior of H13 steel
Authors:Zhen Cao  Shu-qi Wang  Ke-zhi Huang  Bo Zhang  Guo-hong Wen  Qiu-yang Zhang  Lan Wang
Affiliation:School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
Abstract:An artificial tribological layer was formed on the worn surface during sliding, through supplying MoS2 , Fe2 O 3 or their equiponderant mixtures onto the sliding interface of H13/GCr15 steels.The effect of this tribological layer on the wear behavior of H13 steel was studied.The worn surfaces and subsurfaces of H13 steel were thoroughly characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS); the wear mechanisms were explored.The research results demonstrated that tribological layer did not exist during sliding of H13 steel with no additive, but it formed with the addition of MoS2 , Fe2 O 3 or their equiponderant mix-tures.When there was no tribological layer, the wear rate rapidly increased with an increase of the load.In this case, adhesive and abrasive wear prevailed.As the additives were supplied, the artificial tribological layer was observed to be immediately formed and stably existed on worn surfaces.This tribological layer presented an obvious protective function from wear and friction.Hence, the wear rate and friction coefficient were significantly decreased.MoS2 as tribological layer seemed to present more obvious protective function than Fe2 O 3 .By supplying their mixture, the artificial tribological layer possessed not only the load-carrying capacity of Fe2 O 3 , but also the lubricative capacity of MoS2 .These two simultaneous capacities could improve the friction and wear properties of H13 steel further.
Keywords:H13 steel  Artificial tribological layer  Wear behavior  Wear mechanism
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号