首页 | 本学科首页   官方微博 | 高级检索  
     


Microalloying of Sc, Ni, and Ce in an advanced Al-Zn-Mg-Cu alloy
Authors:Yi-Lei Wu  Chenggong Li  F H Froes  Alex Alvarez
Affiliation:(1) the Beijing Institute of Aeronautical Materials, 100095 Beijing, People’s Republic of China;(2) the Institute of Materials and Advanced Processing, University of Idaho, 43844-3026 Moscow, ID
Abstract:Using transmission electron microscopy (TEM), scanning electron microscopy, X-ray diffraction (XRD), and optical microscopy, the effects of microalloying elements of Sc, Ni, and Ce on the microstructure of a new super-high-strength ingot metallurgy (IM)/Al-Zn-Mg-Cu alloy (C912) have been correlated with mechanical properties and stress corrosion cracking (SCC) behavior. Using microalloying with Sc, Ni, and Ce, the C912 alloy can exhibit very high strength and good SCC resistance. Compared to the baseline C912 alloy, Sc refines the microstructure and retards recrystallization, Ni promotes the development of matrix precipitates, which enhance the strength and SCC resistance, and Ce has little effect on alloy strengthening in the three microalloying additions studied. The Sc-containing alloy (C912S) is the most attractive and even exhibits higher strength (ultimate tensile strength (UTS) greather than 660MPa) than the new Alcoa aluminum alloy 7055 and the Russian alloy B96, which have the highest strengths of the commercial IM/Al-Zn-Mg-Cu alloys.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号