首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical simulation of viscous flow past an oscillating square cylinder using a CIP-based model
Abstract:The flow past an in-line forced oscillating square cylinder at Reynolds number of 200 is studied using an in-house code, named constrained interpolation profile method developed in Zhejiang University(CIP-ZJU). The model is established in the Cartesian coordinate system using the CIP method to discretise the Navier-Stokes equations. The fluid-structure interaction is treated as a multiphase flow of the liquid and solid phases to be solved simultaneously. An immersed boundary method is used to deal with the boundary of the solid body. The CFD model is first applied to the computation of the flow past a fixed square cylinder for its validation. Computations are then performed for the flow past a square cylinder oscillating in the streamwise direction. Considerable attention is paid to the symmetric and anti-symmetric modes of the vortex shedding in the oscillating square cylinder wake. Various oscillation amplitudes and frequencies are simulated and their effects on the vortex shedding modes are analyzed via Lissajous patterns of the unsteady lift coefficient. The relationship among the lift coefficient, the drag coefficient and the lock-on range is also investigated quantitatively.
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号