首页 | 本学科首页   官方微博 | 高级检索  
     


Additively patterned ferroelectric thin films with vertical sidewalls
Authors:Aaron J Welsh  Denis Dezest  Liviu Nicu  Susan Trolier‐McKinstry
Affiliation:1. Materials Science and Engineering Department and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania;2. Laboratoire d'Analyse et d'Architecture des Systemes‐Le Centre National de la Recherche Scientifique, University de Toulouse, Toulouse, France
Abstract:The functional properties of electroceramic thin films can be degraded by subtractive patterning techniques used for microelectromechanical (MEMS) applications. This work explores an alternative deposition technique, where lead zirconate titanate (PZT) liquid precursors are printed onto substrates in a desired geometry from stamp wells (rather than stamp protrusions). Printing from wells significantly increased sidewall angles (from ~1 to >35 degrees) relative to printing solutions from stamp protrusions. Arrays of PZT features were printed, characterized, and compared to continuous PZT thin films of similar thickness. Three‐hundred‐nanometer‐thick printed PZT features exhibit a permittivity of 730 and a loss tangent of 0.022. The features showed remanent polarizations of 26 μC/cm2, and coercive fields of 95 kV/cm. The piezoelectric response of the features produced an e31,f of ?5.2 C/m2. This technique was also used to print directly atop prepatterned substrates. Optimization of printing parameters yielded patterned films with 90° sidewalls. Lateral feature sizes ranged from hundreds of micrometers down to one micrometer. In addition, several device designs were prepatterned onto silicon on insulator (SOI) wafers (Si/SiO2/Si with thicknesses of 0.35/1/500 μm). The top patterned silicon was released from the underlying material, and PZT was directly printed and crystallized on the free‐standing structures.
Keywords:ferroelectricity/ferroelectric materials  lithography  printing  sol‐gel  thin films
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号