首页 | 本学科首页   官方微博 | 高级检索  
     


The effect of B4C addition to MnO2 in a cathode material for battery applications
Authors:Manickam Minakshi  Mark G Blackford  Touma B Issa
Affiliation:a Faculty of Minerals and Energy, Murdoch University, Murdoch, WA 6150, Australia
b Institute of Materials Engineering, ANSTO, PMB 1, Menai, NSW 2234, Australia
Abstract:Boron carbide (B4C) added manganese dioxide (MnO2) used as a cathode material for a Zn-MnO2 battery using aqueous lithium hydroxide (LiOH) as the electrolyte is known to have higher discharge capacity but with a lower average discharge voltage than pure MnO2 (additive free). The performance is reversed when using potassium hydroxide (KOH) as the electrolyte. Herein, the MnO2 was mixed with 0, 5, 7 and 10 wt.% of boron carbide during the electrode preparation. The discharge performance of the Zn|LiOH|MnO2 battery was improved by the addition of 5-7 wt.% boron carbide in MnO2 cathode as compared with the pure MnO2. However, increasing the additive to 10 wt.% causes a decrease in the discharge capacity. The performance of the Zn|KOH|MnO2 battery was retarded by the boron carbide additive. Transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy analysis (EDS) results show evidence of crystalline MnO2 particles during discharging in LiOH electrolyte, whereas, manganese oxide particles with different oxygen and manganese counts leading to mixture of phases is observed for KOH electrolyte which is in agreement with X-ray diffraction (XRD) data. The enhanced discharge capacity indicates that boron atoms promote lithium intercalation during the electrochemical process and improved the performance of the Zn|LiOH|MnO2 battery. This observed improvement may be a consequence of B4C suppressing the formation of undesirable Mn(III) phases, which in turn leads to enhanced lithium intercalation. Too much boron carbide hinders the charge carrier which inhibits the discharge capacity.
Keywords:Boron carbide  TEM  Zn-MnO2 battery
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号