首页 | 本学科首页   官方微博 | 高级检索  
     


A polymer electrolyte membrane for high temperature fuel cells to fit vehicle applications
Authors:Mingqiang Li  Keith Scott
Affiliation:a School of Chemical Engineering and Advanced Materials, University of Newcastle, NE1 7RU, UK
b School of Energy and Power Engineering, Dalian University of Technology, China
Abstract:Poly(tetrafluoroethylene) PTFE/PBI composite membranes doped with H3PO4 were fabricated to improve the performance of high temperature polymer electrolyte membrane fuel cells (HT-PEMFC). The composite membranes were fabricated by immobilising polybenzimidazole (PBI) solution into a hydrophobic porous PTFE membrane. The mechanical strength of the membrane was good exhibiting a maximum load of 35.19 MPa. After doping with the phosphoric acid, the composite membrane had a larger proton conductivity than that of PBI doped with phosphoric acid. The PTFE/PBI membrane conductivity was greater than 0.3 S cm−1 at a relative humidity 8.4% and temperature of 180 °C with a 300% H3PO4 doping level. Use of the membrane in a fuel cell with oxygen, at 1 bar overpressure gave a peak power density of 1.2 W cm−2 at cell voltages >0.4 V and current densities of 3.0 A cm−2. The PTFE/PBI/H3PO4 composite membrane did not exhibit significant degradation after 50 h of intermittent operation at 150 °C. These results indicate that the composite membrane is a promising material for vehicles driven by high temperature PEMFCs.
Keywords:Porous PTFE  PBI  High temperature PEMFC  Fuel cell  Composite membrane  Proton conductivity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号